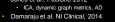
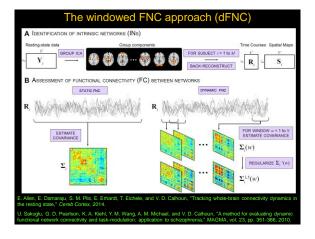
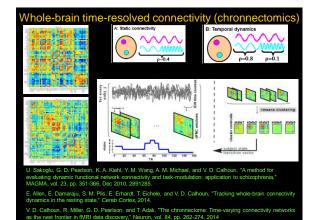


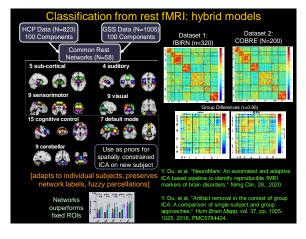
- Dynamic Connectivity: Brief Intro
- Temporal Dynamics
- Spatial Dynamics
- Classification, Simulation, Validation
- Temporal features (primitives, statelets)
- Additional Clinical Applications
- Conclusion

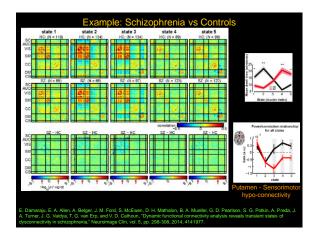

urie et al. Network N

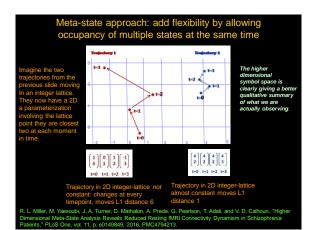
varving co

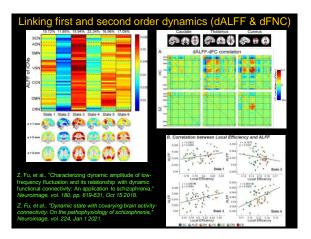

 Kiviniemi et al. Sliding window, spatial DMN changes

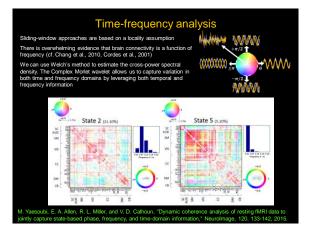

2012

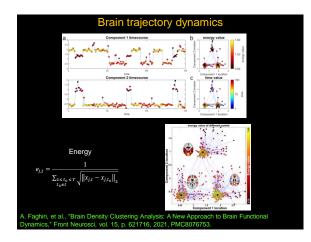

- Allen et al., Cerebral Cortex 2012. ICA FNC 'states', dwell time, etc. Jones et al., PlosOne 2012

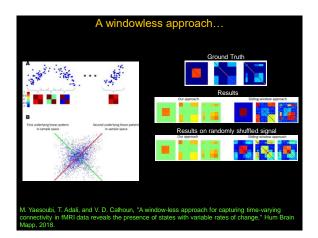


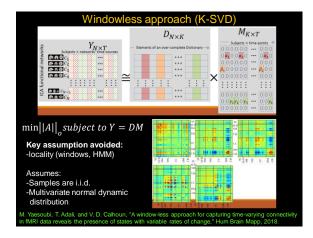

- ICA FNC static & dynamic states in I arge SZ stud
- Reviews
- Hutchison 2013, Neuroimage
 Calhoun et al. Neuron 2014 ["chronnectome"]
- Calhoun IEEE SPS Letters, 2016
- Preti et al., Neuroimage 2017
- Lurie, Network Neuroscience 2019 [extensive coverage of many issues]
 Iraji, Trends Cog. Sci 2020 [spatial dynamics]

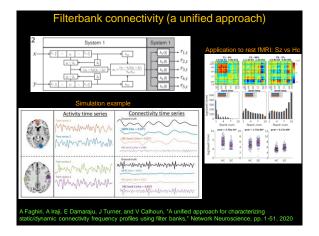




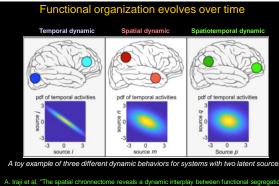

chizophrenia reduced dynamic fluidity & dynamic rang -5.37 =1.4e-6 -2.59 (p=0.003 -4.80 (p=5.9e-7) -2.7 (p=1.5e-9) on, A. Preda, G. Pearlson, T. Adali, and V. D. Calhoun, "Higher ced Resting fMRI Connectivity Dynamism in Schizophrenia Miller, M. Yaesoubi

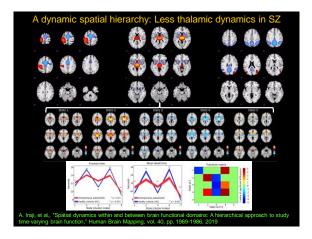


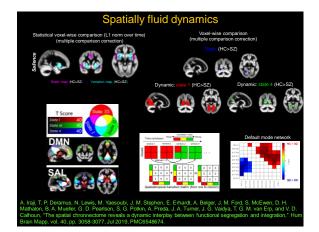

Outline


- Dynamic Connectivit Temporal Dynamics
- Spatial Dynamics
- Classification, Simulation, Validation
- Temporal features (primitives, statelets)
- Additional Clinical Applications
- Conclusion



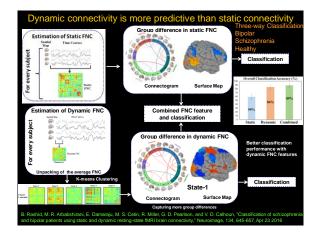






- Dynamic Connectivity: Brief Intro
- Temporal Dynamics
- Spatial Dynamics
- · Classification, Simulation, Validation
- Temporal features (primitives, statelets)
- Additional Clinical Applications
- Conclusion

 A. Iraji et al, "The spatial chronnectome reveals a dynamic interplay between functional segregation and integration," Hum Brain Mapp, vol. 40, pp. 3058-3077, Jul 2019, PMC6548674.
 A. Iraji, R. Miller, T. Adali, and V. D. Calhoun, "Space: A Missing Piece of the Dynamic Puzzle," Trends Cogn Sci, vol. 24, pp. 135-149, Feb 2020



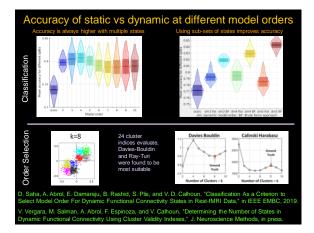
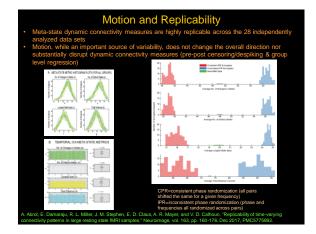
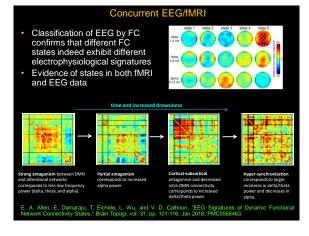
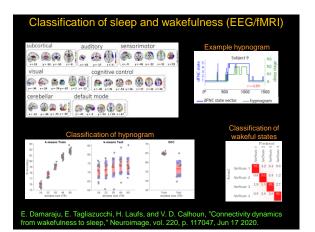
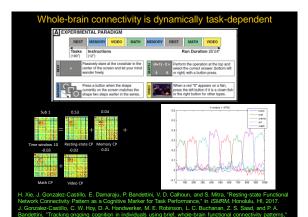


Table 1. A (Noncomprehensive) Categorization of Examples of	of Existing Analytic	al Approaches B	ased on th	ne Type of Estin	nated Sources
Analytical approach	Node = Source ³	Multiple spatial patterns	Spatiotemporal dynamic		Refs (example)
			Spatially dynamic	Temporally dynamic	
Seed-based analysis (SBA)	No	No	No	No	[31]
Independent component analysis (ICA)	Yes	Yes	No	No	[32,33]
Co-activation pattern (CAP) analysis ^b	No	Yes	No	No	[30]
Dynamic functional connectivity (dFC) with fixed nodes/seeds	No	No	No	Yes	[34-36]
Dynamic functional network connectivity (dFNC) analysis	Yes	Yes	No	Yes	[37,38]
Dynamic coupling map (dCM) analysis ⁰	Yes	Yes	Yes	No	[39]
Windowed ICA/ independent vector analysis (SW-ICA/IVA) ^o	Yes	Yes	Yes	No	[40,41]
Constrained SW-IVA	Yes	Yes	Yes	Yes	[42]
Dynamic hierarchy analysis (dHA)	Yes	Yes	Yes	Yes	[43]


Outline


- Dynamic Connectivity: Brief Intro
- Temporal Dynamics
- Spatial Dynamics
- Classification, Simulation, Validation
- Temporal features (primitives, statelets)
- Additional Clinical Applications
- Conclusion

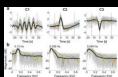


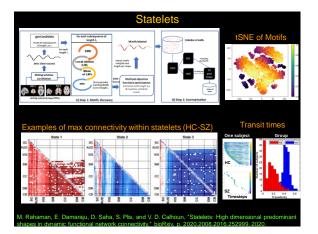


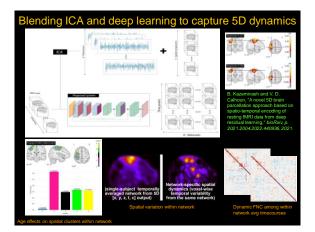
Νι	ull mode	ls & dyr	namics		
Stationary					citly <u>Non-</u>
	CC Gaussia	ns Ne	twork TCs	Statio	onary TCs
S	CC=spectrally				
cc	variance cons	trained			
	Multivariate Kurtosis				
	Multivariate	Stationary	Stationary	Real	Explicitly
Multivariate Kurtosis: No	Kurtosis	Epochless	Gaussian	Data	Nonstationary
Significant T-Statistics for Row versus Column Regime: No	Epochless		•	+	
Evidence of Increasing Epochal	Gaussian	*	*		
Nonstationarity	Real		•		
	Nonstationary		•	*	•
		M	ultivariate φ		
	Phi	Stationary	Stationary	Real	Explicitly
Multivariate ϕ : Significant T- Statistics for Row versus	STDE Metric	Epochless	Gaussian	Data	Nonstationary
Column Regimes Yield Evidence	Epochless		-40.32	-50.06	-98.87
Column Regimes Yield Evidence of Progressively Increasing Epochal Nonstationarity	Gaussian			-16.88	-91.60
Epochal Nonstationarity	Real	•	•	•	-66.38
	Nonstationary		,		
R. L. Miller, A. Abrol, T. Adali, Y. Levin Models: Perspectives, Sampling Varia					

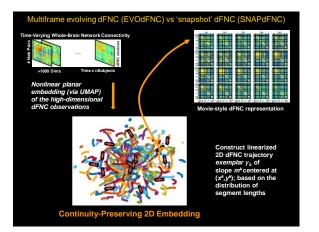
- •

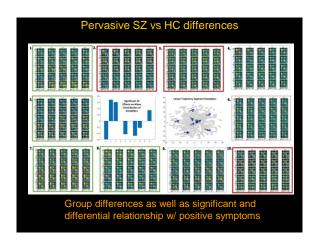
- Temporal features (primitives, statelets)
- Additional Clinical Applications
- Conclusion

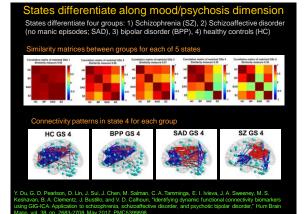

Searching the dynamic space

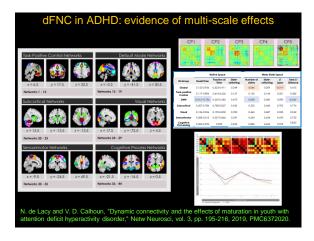

ering to compare apples/apples: tive search for similarity among: lues, 2) windows (time), 3) subje nong: 1)

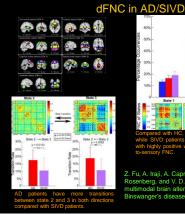


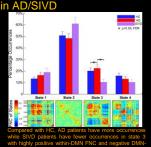

Leng, vol. 67, pp. 110-121, Jan 2020.
 M. A. Rahaman, et al., "A novel method for tri-clustering dynamic functional network connectivity (dFNC) identifies in distinct subgroups of individuals," bioRxiv, p. 2020.2008.2006.239152, 2020.


Deep learning (deep temporal convolutional neural network) to re repeating temporal tives with brain networks

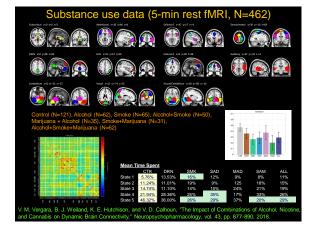


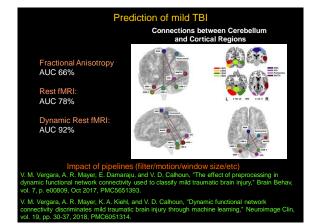


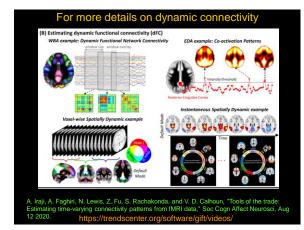


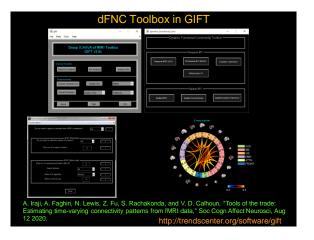


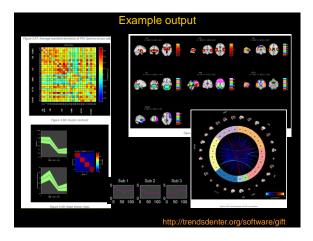
- Additional Clinical Applications
- Conclusion






Z. Fu, A. Iraji, A. Caprihan, J. C. Adair, J. Sui, G. A. Rosenberg, and V. D. Calhoun, "In search of multimodal brain alterations in Alzheimer's and Binswanger's disease," *Neuroimage Clin*, 2019





Image/Genomic Fusion: SNPs & tir	ne-resolved	connectiv	vity		
7 State 1 show State 1 State 2	State 3	Significant dFN	C cells/state		
significantly lower		Statell	Occupancy		
26 occupancy for			(HC/SZ)		
Schizophrenia		1	22%/14%		
SZ=14% vs HC=22%)		2	32%/11%		
		3	20%/18%		
		4	9%/32%		
		5	16%/27%		
significantly lower occupancy for schizophrenia (52-64/s vs MC-22/s) schizophrenia (52-64/s vs MC-22/s) schizophrenia (52-64/s) schizophrenia (52-64/s) schizophrenia (52-64/s) schizophrenia (52-64/s) schizophrenia (52-64/s) schizophrenia (52-64/s) schizophrenia (52-64/s) schizophrenia (52-64/s) schizophrenia (52-64/s) schizophren	Not linked				
Component		21			
2 3 Anti-correlated with	-	1			
Polygenic Risk Score		1 Same	2		
$(p < 1.4024x10^{-12})$			6134 L		
p 3 2 2 (c < 1.402×10 ⁻²)					
E 1999 1 28 Contraction 1 1 1 1	1. A	f	23.		
	1993 - N	4	1.11		
	1.58		A 41 47 41		
	2 · · · · · · · · · · · · · · · · · · ·	Correlation=	0 5401		
	10 1 1 1 N 10 1	(p-value=1.40			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	7 18 19 20 22	(p-value=1.40	J248-12)		
Chromosome					
Parallel ICA was used to link dFNC matrices	Biological I		Gene Name		
Farallerica was used to link uping matrices	Neurological Disease, Pr		CHRNA3		
to 4000 SNPs identified via the PGC study	Hereditary Disorder, N		ATXN7		
to 4000 or a sidentified via the r oo study	Molecular Transport		SMG6,THOC7		
	Visual System Develo		ATXN7		
One state was linked with SNPs (primarily	Cell Morphology, Emb		CCHCR1		
from all C) and according of with C7 vials	Nervous System Dev.,		ATXN7		
from ch 6) and associated with SZ risk	Developmental Disorder Immunologic		SMG6 RERE		
	Immunological Dis., Inflar		HLA-C		
B. Rashid, J. Chen, I. Rashid, E. Damaraju, J. Liu, R. Miller, O. Agcaoglu, T. van Erp, K. Lim, J. Turner, D. Mathalon, J. Ford, J. Vovvodic, B. Mueller, A. Belger, S. McEwen, S. Potkin, A. Preda, J. Bustillo, G. Pearlson, and V. D. Calhoun, "A framework for linking".					
resting-state chronnectome/genome features in schizophrenia: A pilot study," Neuroimage, vol. 184, pp. 843-854, 2019.					

	o (
Software						
	http://trendscenter.org/software					
	freeware, written in MATLAB (also offering conversions), python, etc: over 20,000 unique dow					
	GIFT (Group ICA of fMRI Toolbox)					
	 Single subject/Group ICA 	Searchinese Balliona National				
	 MANCOVA testing framework 	Topac Sal				
	 Source based morphometry 	Consent Failure Sequelar Terrar Electronic Electronic				
	 ICASSO (clustering/stability) 	The I I I I I I I I I I I I I I I I I I I				
	Dynamic FNC/Coherence	414 6 39 in 194 (n an in 1) 48 in 14 a r = 2 4 4				
	FIT (Fusion ICA Toolbox)	ADD- ADD- ADD- ADD- ADD- ADD- ADD-				
	 Parallel ICA, jICA 	0.00000000				
	 mCCA+jICA & much more! 	Left Henrichter Visual Street				
	Simulation Toolbox (SimTB)					
	 Flexible generation of fMRI-like data 					
	COINS (data management/capture/sharing)					
	 http://coins.trendscenter.org 					
	COINSTAC (decentralized analysis, privacy)					
	 https://github.com/MRN-Code/coinstac 					
	CORTEX (deep learning)	A worked				
	https://github.com/rdevon/cortex					

