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History of the Statistics in Imaging Section of the ASA

Founded in 2012

Founding Officers:
Chair: Dan Rowe (Marquette University)
Chair-elect: Hongtu Zhu (University of North Carolina)
Secretary: Brian Caffo (Johns Hopkins University)
Treasurer: DuBois Bowman (Emory University)
Program Chair: Martin Lindquist (Columbia University)
Program Chair-elect: Hernando Ombao (Brown University)
Publications Liaison: Ranjan Maitra (Iowa State University)
COS Representative: Kary Myers (Los Alamos National
Laboratory)
Tom Nichols
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History of the Statistics in Imaging Section of the ASA

Charge of the Section

The Statistics in Imaging Section promotes statistics and statisticians’
work in all areas of the imaging sciences. We foster research,
education, and influence of statistics and statisticians on imaging
science and its associated areas of application.
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History of the Statistics in Imaging Section of the ASA

Our Goals

Increase the influence of statistics and statisticians on imaging
science and its associated areas of application
Produce a focal organization and meeting-place for statisticians
working in imaging science and its associated areas of application
Introduce statisticians and students to modern problems in
statistical imaging science and its associated areas of application
Organize statisticians for addressing key issues in imaging
science
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History of the Statistics in Imaging Section of the ASA

Our Primary Functions

Sponsorship, including joint sponsorship with other organizations,
sessions at ASA meetings, sessions at imaging conferences,
meetings, seminars and short-courses
Planning, in cooperation with the Program Committee of the ASA,
sessions in national and regional meetings of the ASA, IMS, IBS,
ENAR and WNAR
Promotion of academic, translational and non-journal research in
statistics in imaging sciences
Service as a resource for public and private agencies seeking
assistance in these fields of interest
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History of the Statistics in Imaging Section of the ASA

Past Section Chairs

Dan Rowe, 2012
Hongtu Zhu, 2013
Tim Johnson, 2014
Ciprian Crainiceanu, 2015
John Kornak, 2016
Martin Lindquist, 2017
Nicole Lazar, 2018
Hernando Ombao, 2019
Anuj Srivastava, 2020
Tingting Zhang, 2021
Ying Guo (chair-elect) 2022
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History of the Statistics in Imaging Section of the ASA

History of this meeting

2015: University of Michigan
2016: University of Colorado
2017: University of Pittsburg
2018: University of Pennsylvania
2019: University of California, Irvine
2020: (Covid-19 hiatus)
2021: Emory University

Our primary source of funding. Proceeds used to sponsor student
paper competitions, JSM section meeting, and other functions as
deemed appropriate by current officers.
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Introduction

What is fNIRS?

Oxy/Deoxy. blood NIR light absorption
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Introduction

What is fNIRS?

Functional Near Infrared Spectroscopy
uses light to measure concentration of Oxy/Deoxy hemoglobin
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Introduction

Physiological Response to Stimuli (BOLD response)

BOLD-Blood Oxygen Level Dependent
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Introduction

Physiological Response to Stimuli (BOLD response)

BOLD response not instantaneous
BOLD response modeled by the HRF
Canonical HRF used - often with time and dispersion derivatives
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Introduction

Example of fNIRS data
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Introduction

Challenges with fNIRS statistical modeling

Physiological signals can be strong and picked up by fNIRS and
are quasi-periodic

vasomotor—frequency very close to block design frequency
heart beat
respiration

Fast temporal sampling resulting in high auto-correlation
Motion artifacts
Heteroscedasticity
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Introduction

Power Spectrum Components
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Bayesian Semiparametric, TVAR (BSP-TVAR) Model

Bayesian semi-parametric model

Yt

= (Xβ)t + (Vη)t + RT
t φt + εt

The time series data: Y = (Y1,Y2, . . . ,YT )
′
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Bayesian Semiparametric, TVAR (BSP-TVAR) Model

Bayesian semi-parametric model

Yt = (Xβ)t

+ (Vη)t + RT
t φt + εt

X is the design matrix convolved with the HRFs
X = D ~ HRF

...
=

...
~

HRFs modeled only w/canonical HRF
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Bayesian Semiparametric, TVAR (BSP-TVAR) Model

Bayesian semi-parametric model

Yt = (Xβ)t + (Vη)t

+ RT
t φt + εt

Vη models this drift nonparametrically with B-spline basis
Number and location of bases random

Use general birth-death MCMC algorithm
(Stephens, 1998, Annals of Statistics)
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Bayesian Semiparametric, TVAR (BSP-TVAR) Model

Bayesian semi-parametric model

Yt = (Xβ)t + (Vη)t + RT
t φt

+ εt

Rt is the P-vector of lags at time t

Rt = (Rt−1, . . . ,Rt−P)
T

where
Rt = Yt − (Xβ)t + (Vη)t

φt is the P-vector of TVAR coefficients at time t

φt = (φt1, . . . , φtP)
T
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Bayesian Semiparametric, TVAR (BSP-TVAR) Model

Bayesian semi-parametric model

Yt = (Xβ)t + (Vη)t + RT
t φt + εt

εt is the model error at time t :

εt ∼ N(0, σ2
t )
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Bayesian Semiparametric, TVAR (BSP-TVAR) Model

Bayesian semi-parametric model

Yt = (Xβ)t + (Vη)t + RT
t φt + εt

Suitable priors placed on all parameters
flat prior for β
η ∼ MVN(0, k I)

k a constant

number of basis (knots): Poisson(5,1)
knot locations: uniform on time range of data
εt ∼ N(0, σ2

t )
φt and σ2

t discussed next slide
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Bayesian Semiparametric, TVAR (BSP-TVAR) Model

Priors continued

Qt = RT
t φt + εt , t = P + 1, . . . ,T cast into DLM framework

φt updated with standard forward-filtering, backward-smoothing
algorithm for DLMs (Gibbs)

φt = φt−1 + wt , wt ∼ MVN(0,Wt)

Discount factor, δ1 used for evolution variance Wt
Beta-gamma evolution model for σ2

t (Gibbs update):

σ2
t = δ2σ

2
t−1/γt

where
(γt | Dt) ∼ Beta (δ2nt−1/2, (1− δ2)nt−1/2)

and δ2 ∈ (0,1) acts as a discount factor.
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Bayesian Semiparametric, TVAR (BSP-TVAR) Model

Posterior Sampling

β and η jointly updated via Gibbs
knot locations and number of knots—BDMCMC
locations further updated via MCMC

Harrison and West:
Suggest values of the discount factors and TVAR order be
selected a-priori by maximizing the log likelihood.
Cannot do this in our model as the mean structure (i. e. Xβ + Vη)
is not know, a-priori

We take a different, fully Bayesian approach:
Both discount factors given uniform priors on (0.7, 1.0).
The TVAR order P given a uniform prior on the integers
{1,2, . . . ,80}
All three updated via Metropolis-Hastings algorithm
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Simulation Study

Simulation Study
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Simulation Study

Simulation Study

Simulated 2000 data sets for each of the four settings
AR(3) model with coefficients 0.5, 0.2, 0.15
Marginal variance = 1
Canonical HRF, event related design with 10 events
β = 0, 0.5
Studied our proposed Bayesian model and the AR-IRLS

AR-IRLS proposed by Barker, et al. , Biomedical Optics, 2013
The model used by my collaborators and considered
“state-of-the-art”
Best model I could find in the literature
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Simulation Study

Simulation Results: β = 0

Model Motion LFD Cover. Bias
√

MSE Length
Bayesian No No 0.946 -0.0020 0.158 0.628
AR-IRLS 0.933 -0.0002 0.164 0.607
Bayesian No Yes 0.953 -0.0043 0.162 0.634
AR-IRLS 0.929 0.0234 0.164 0.609
Bayesian Yes No 0.952 0.0290 0.161 0.650
AR-IRLS 0.795 0.4738 0.505 1.240
Bayesian Yes Yes 0.934 0.0583 0.171 0.655
AR-IRLS 0.772 0.4883 0.521 1.253
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Simulation Study

Simulation Results: β = 0.5

Model Motion LFD Cover. Bias Power
√

MSE Length
Bayesian No No 0.956 0.0022 0.892 0.154 0.629
AR-IRLS 0.935 0.0003 0.886 0.164 0.605
Bayesian No Yes 0.941 -0.0047 0.861 0.165 0.634
AR-IRLS 0.929 0.0234 0.913 0.164 0.609
Bayesian Yes No 0.954 0.0299 0.903 0.161 0.649
AR-IRLS 0.796 0.4719 0.979 0.503 1.239
Bayesian Yes Yes 0.927 0.0547 0.916 0.178 0.654
AR-IRLS 0.779 0.4892 0.989 0.521 1.252
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Simulation Study

Simulation Results: Motion, Sine LFD, β = 0
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Simulation Study

Simulation Results: Motion, Sine LFD, β = 0
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β̂ = −0.21, 95% CI = (−0.53, 0.11) ̂E(β | y) = −0.03, 95% Cred.Int. = (−0.35, 0.29)
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Simulation Study

Motion not always captured correctly
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Simulation Study

Priors for B-splines

1 Poisson prior on number of splines
2 Uniform prior on locations

Can result in poor fit to motion

Homogeneous Poisson process has properties (1) and (2)

Perhaps an inhomogeneous Poisson process prior
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Simulation Study

New prior for B-splines, simple case: 1 shift motion artifact

Let m1 denote the location of the motion
Let m1 ∈ (m1 − δ,m1 + δ]

Define a piecewise homogeneous Poisson process on the three
intervals

(0,m1 − δ], (m1 − δ,m1 + δ], (m1 + δ,T )

with intensity functions

λ0 =
r

(m1 − δ) + (T −m1 − δ)

λ1 =
rm

2δ

λ2 =
r

(m1 − δ) + (T −m1 − δ)
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Simulation Study

New prior for B-splines, simple case: 1 shift motion artifact

The above intensity functions define a piecewise homog. Poisson
process with rate rm on (m1 − δ,m1 + δ] and total rate r on
(0,m1 − δ] ∪ (m1 + δ,T )

The rate r is shared propotionally to the length of the two intervals
Take r moderately size, say 5 or 10.
rm = 4

For cubic B-splines, 4 bases that coalesce results in a discontinuity
at the point of coalescence.

Requires user input to define motion locations
δ taken to be 1 second
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Simulation Study

Better motion modeling via prior
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Simulation Study

Simulation comparison, β = 0.5

Model Motion LFD Cover. Bias Power
√

MSE Length
Homog. PP Yes Yes 0.927 0.0547 0.916 0.178 0.654
Inhomog. PP 0.948 0.0504 0.932 0.163 0.637
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Real Data Analyses

Data Analysis: Example 1
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Real Data Analyses

Data Analysis: Example 1
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Real Data Analyses

Data Analysis: Example 1
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Real Data Analyses

Data Analysis: Example 1
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Real Data Analyses

Data Analysis: Example 1
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Real Data Analyses

Data Analysis: Example 1
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Real Data Analyses

Data Analysis: Example 1
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Real Data Analyses

Data Analysis: Example 2
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Real Data Analyses

Data Analysis: Example 2
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Real Data Analyses

Data Analysis: Example 2
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Real Data Analyses

Data Analysis: Example 2
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Real Data Analyses

Data Analysis: Example 2
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Real Data Analyses

Data Analysis: Example 2
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Real Data Analyses

Data Analysis: Example 2
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Wrap-Up

Conclusions/Future Work

Showed BSP-TVAR model outperforms AR-IRLS
Especially in the presence of motion artifacts

Future work
Modeling of the HRF
Bivariate TS model

deoxy. hem. may be important
may help overall model fit

Spatial modeling of the array of detectors
Group model

Inclusion of clinical covariates
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Wrap-Up
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